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Abstract

We consider the use of preconditioning methods to accelerate the convergence
to a steady state foi 1)oth the incompressiIble and compressible fluid dynamic equa-
tions. Most of the analysis relies on the inviscid equations though some applications
for viscous flow are considered. The preconditioning can consist of either a matrix
or a differential operator acting on the time, derivatives. Hence, in the steady state
the original steady solution is obtained. For finite difference methods the precondi-
tioning can change and improve the steady state solutions. Several preconditioners
previously discussed are reviewed and some new approaches are presented.
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1 Introduction

Over t lie past years liumerous researchers have tried to solve the steady state incompress-

il)le equations for both invisciid and viscous flows. This also lead to attempts to solve the
cOInpressil)le e(liations over a large range of mach numbers. A standard way of solving
the steadlv state equations is to march the time dependent equations until a steady state
is reaihed. Since the tranisient is riot of any interest one can use acceleration techniqres
which destroy t lie time accuracy but enable one to reach the steady state faster. For the
inco)mpresible equations the continuity equation does not contain any time derivatives.
To overcome this difficulty ('horin [14] added an artificial time derivative of the pressure
to the continuity equation together with a multiplicative variable, 13 . With this artifi-
cial term the resultant scheme is a symmetric hyperbolic system for the inviscid terms.
Thus, the system is well posed and and numerical method for hyperbolic systems can
be used to advance this system in time.. The free parameter /t is then chosen to reach

the steady state quickly. Later Turkel [54] extended this concept by adding the pressure
tine derivative to the momentum equations and introducing a second free parameter a.
This system can then be analyzed for optimal a, 13. The resulting system after precon-
(litioning is no longer symmetric but can be symmetrized by a change of variables. This

will be shown in more detail later.
It is well known that it, is difficult to solve the compressible equations for low Mach

num)ers. For an explicit schemae this is easily seen by looking at the time steps. For
stability the time step must be chosen inversely proportional to the largest eigenvalue of
the sy-stem which is approximately the speed of sound, c, for slow flows. However, other
waves are convected at the fluid speed, i , which is much slower. Hence, these waves

Ion't change very much over a time step. Thus, thousands of time steps are required
to reach a steady state. Should one try a multigrid acceleration one finds that the same
disparity in wave speeds slows down the multigrid acceleration. With an implicit method
an ADI factorization is usually used so that one can easily invert the implicit factors.
The use of A 1)I introduces factorization errors which again slows down the convergence

rate when there are wave speeds of very different magnitudes [49] .
For small Maclh numbers it can be shown ([28], [31] ) that the incompressible equations

approximate the compressible equations. Hence, one needs to justify the use of the
compressible equations for low Macl flows. We present several reasons one would still

use the compressible equations even though the Mach number of the flow is small.

* There are many sophisticated compressible codes available that could be used for
sICh l)roblems especially in complicated geometries

o For low speed aerodynamic problemus at high angle of attack most of the of the
flow consists of a low Maclh number flow. HIowever. there are localized regions
containing shocks.

o In many pro)lehms thermal effects are important and the energy equatlion is coupled
to the other equations.

Therefore, one wants to change the transient nature of the syst erm to remove this

disparity, of the wave speeds. Based on an analogy with conijigate gradient methods



such methods were called [5-4] precondit ionedl met~hod1s since the object is to reduce the
coii1litioii number of thle mat rix. Another approach. iii one( dIimnelsion, is to diagonalize
the mlatrix of thle inviscid terml. One call then use a dhifferent, time step) for each equiat i0ou1
or wave. U~pon returning to thle original variables one finds that t his is equiiivalenit to
multiplying thle time (derivatives bv a matrix. H-ence, this same approach is iiamied
chiaracterist ic time stepping iii [55]. 111 inilt idimetisions Out' canl1n0 longer comnplet ely
(lecouiIle the waves byV (iagonalizing both tilte ent~ropy and( the shear waves andi so the
characteristic time stepp)ing is only anl approximation1.

Thus, for bothI thle I ncompressiblle and comnpressibl~e equat ionis we will consider svs-
tell)" of thle forml

(1I) wt + f'- + g~ 0,

This syýstenm is written inl conservation though for some applicatilonls this is not necessary.
Ouir analysis will be based onl thle linearizedl equat ions so t hat thec conservation forim (toes
not, appear inl the analysis thouigh it (toes appe-ar InII hie umilerical systeml. This svteml
is now rep~lacedl by

(2) P-'1 1w, + f" + 0.

or, inl linearized form

(3) P-wi, + Air3 + Bu3w 0.

riI order for this system to be equivalent to the original system inl thle steady st ate
we tleinand t hat P have aii Inverse. Thuis only need be t rue ini the flow regi me un1der
conisiderationi. 'We shall see later that frequently P is singular at, stagnation lpoiiit andl
also along thle sonic fiue. Thus, we will only consider strictly subsoiiic flow wit houit a
sti gliation point. or else strictly suipersomuic flow. For transonic flow it is necessary to
smoothI out the singularity inl a neighborhood of the sonic line. We also assume that the
.Jacobian mat rices A - anid B = -Z- are slimiultaneomusly syninmetrizable. Ili t ermns of
the 'svmmectri zing' variables we also demand that P be positive definite. We shall show
later iii (let ail tHat, it. (toes inot mat~ter which set, of dependent variab~les aretused to develop
lie jprecond~itioiier. One( can transform b~etween anyv two set~s, of variables. The choice

of variabl es is dlictatedl only byv convenience inl construct~ing thle precontlit ioner. Popular
choices are tw() out, of leiisitv, p~ressuire. enthial py, ent ropv or t~emperature ill adldit ion t~o
tlie velocityv compoiients. Thus, when we are finishied we will analyze a sy-stem which is
si in i ar to (3) where t.hle matrices A andl 1 are symmetric andl P is both symn metric anid
positivye defi iiit e. Such syst ems are known as svinniert c hivperb~olic systems. One canl
Ilien nl 1t i ply t.hiis system by wt aind ilitegrat~e byv parts to get (est imat es for the integral of

2
tilt* ... e. eiiergv (est imates. These estimates cani then be used to show that, the( syst em Is
well posed. We stress thIiat if P is iiot positivye thlen we change the )hYSI CS of tihe probl ein
Fo r ex au i ple. If P =- I thein we have reversedl thie time dIirection andl inust t herefore
chiamige all t he 1)011iilav conldi tioiis. I lence, to be sure t hat t he systeml Is well posedl wit Ii
tlic origi mid t 'vpe of 1)mmmidary condi t iomis we shall oiily couside r t he svmiiiet rnc hyperbolic

"~vst eml. For more general syst ems one imist mise a more complicated analysis to show
well-posediiess for the iiuitial-boundiirv value problem ([30], [63]).



With these assumptions we see that the steady state solutions of the two systems
are the same. Assuming the steady state has a unique solution it does not matter which
systenm we march to a steady state. VNe shall later see that for the finite difference
approximations the steady state solutions are not the necessarily same and usually tie

1)reconditioned system leads to a better behaved steady state.
We can also look at (3) from a different viewpoint. We assume that the matrices A

and B are symmetric and P is positive definite. It is well known that for the Euler equa-
tions that the matrices A and B cannot be simultaneously diagonalized by a similarity
transformation. However, the matrix P has changed the equation. Since P is positive
definite there exists a matrix Q so that P = QQ*. We then introduce a new variable

w = Qv. For constant coefficients A, B (3) is replaced by

(1) vt + Q'AQv, + Q*BQvv = 0,

Thus, the diagonalization question changes and we wish to know if A and B can
be simultaneously diagonalized by a congruence transformation (Q*AQ) . A sufficient
condition for this to be true is that there exist numbers w1 , W2 so that wIA + w2 B is
positive definite. It, is shown in [53] that this true for supersonic flow. Hence, we have

shown that for supersonic flow one can introduce a preconditioning matrix so that the
equations (constant coefficients) are diagonalized. However, this is not true for subsonic
flow. We shall later show that using differential operators one can diagonalize the system
even for subsonic flow.

2 Incompressible equations

We first consider the incompressible inviscid equations in p)rimitive variables.

Ux± + vy = 0

(5) ut + Utix + vuY + PX = 0

17t + UV7- + vvy + Py = 0

We consider generalizations of Chorin's pseudo-comnpressit)ility method [14]. TSi'ng the
pre(on(litioning suggested in [54] we have

I t+ ?11 + ?"Y 0
i12

(6) Ut + ?L i, + 17 + p7 = 0

/ _ V • t + ?11,. + v vt'. + P yv 0

or in) conservati-n form

J + it, +'vy = 0



(7) (a + l)uU+(U2 ±P)±(+ 0

(a t + + (uv), + ( Y + p(, 0

Hence, (7) reduces to the original pseudo-compressibility method when a = 0. The
conservative form reduces to the basic method when a = -1 . We can also write (7) in
matrix form using

11/32 0 0 ý
(8) pT-I au/f 2 1 0 PT -au 1 0

n•v/f 2 0 1 -at 0 1

i.e.

1 //32 0 00 1
(9) au//02 1 0 u I 1U 0 u + 0 V 0 =0

a~v /1132 0 1 vt7 0 0 U V 1 0 1, V

Multiplying by P we rewrite this as

(10) w, + PAw, + PBwu= 0

We also define

(11) D = WlA+ W2B -1 <_WI, 2 <_ I

where w1 ,w 2 are the Fourier transform variables in the x and y directions respectively.
The speeds of the waves are now governed by the roots of det(AI - PAw1 - PBw2 ) = 0
or equivalently det(AP-' - Awl - Bw2 ) = 0. Let

(12) q = uwl + vw 2

Then the eigenvalues of D are

(13)do q

d = I/2 [(1 - a)q ±/(l - a) 2 q2 + 4)32]
Note that in the special case a-v 1 we have

(14) d= t/

and so the 'acoustic' speed is isotropic.
We see that the spatial derivatives involve symmetric matrices, i.e. D is a symmetric

matrix. 'hris, while the original system was symmetric hyperbolic the preconditioned
system is no longer symmetric. In ([541) it is shown that, as long as

(15) /2 > 001 2 + ?Y2)



then the system is symmetrizable. Hence, for any nonnegative a the system is always
symmetrizable. Recall that a 0 for the original pseudo-compressibility equations in
primitive variables (7) while a -1 for the original pseudo-compressibility method in
conservative variables (8) For a 1 we need

(16) /32 > (u1 + 12 )

On the other hand the eigenvalues are most equalized if /32 = (u 2 + v2 ). Hence, we wish
to choose /32 slightly larger than u1 + v2 . However, numerous calculations verify that in
general a constant /3 is the best for the convergence rate. The reasons for this are not
clear.

However, we wish to stress that /3 has the dimensions of a speed. Therefore, /3 can not
be a universal constant. There are papers that claim that/3 1= or /3 = 2.5 are optimal.
Such claims can not be true in general. It is simple to see that if one nondimensionalizes
the equation then /3 gets divided by a reference velocity. Hence, the optimal 'constant' /3
depends on the dimensionalization of the problem and in particular depends on the inflow
conditions. In most calculations the inflow mass is fixed at one or else p+ (u2 +v'2 )/2 = 1.
Such conditions will give an optimal 3 close to one. However, if one chose the incoming
mass as ten then the optimal 3 would be closer to ten.

Van Leer, Lee and Roe considered the compressible equations. They wanted a sym-
metric preconditioner so that there would be no question of well posedness. We now
translate their results to the incompressible equations (1). They assume that the flow is
aligned with the x direction and so v=0 and Jul 2 is the total speed of the fluid. Their
preconditioner in this coordinate system is

02 JIul T2 U 0\
(17) P -Lu Il+±- 0

k 0 0 7-
Choosing r = I preserves the speed of the shear wave while choosing /3 1 gives an
isotropic 'acoustic' wave (20) the magnitude of this acoustic wave is determined. In
order to compare this formula with the previous formulas we wish to reformulate this
preconditioner for the case where the flow is not aligned in the x direction. We denote
the matrices in the streamwise and perpendicular directions as All and A1 respectively.
We next define the rotation matrices as

/1 0 0 \1 0 0
U = 0 cosO U8-I 0 cosO -sinO

0 -sinO co~sO 0 .sin0 coOS

To get the streamwise direction we shall choose

C SO, = 0l- -

* Vill - TOv 2 + t"2

One can then verify that given the original matrices A, B.
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(18) All = U(AcosO + BsinO)U-

A 1 = ((-Asi9O + BcosO)U'-

Given numbers C , 1J2 for All, A, we define

W, = wlcosO - Lý2sinO

LL2 = L-l45i7O + J'2 co.sO

note
W2 +L)2 =L)2 +L)2

1  1  2

Also define
P = 7- pul.

Then it is easy to verify that

P(AILZ, + Alj42) =U [P(Aw, + Bw.2 )] UI-'

Therefore, the appropriate preconditioner is P given by

(19) Pv= -U 1 + ,2+i,2 U2+V2
-- uV + V2

u
2

+v
2 

+ + U22

Note that PA,B are symmetric matrices. This does not imply that PA or PB are
symmetric. However, this is still a symmetric hyperbolic system and so the standard
energy estimates prove the well posedness of the system. We also see that the eig&.n-
values do not change if we use the streamwise direction or the full 2D form. Thus, the
eigenvalut,- of the preconditioned system are

(20) du = Vz• 2 + t?2wi = ,1J1 + V7W2 = q

d+ = ± + ,2

d± are the same as in (13) if we choose a = I and ii = vu + _+2.

As noted before, with the preconditioner of Van Leer et. al. one cannot have the
usual shear speed together with an isotropic 'acoustic' wave speed with an arbitrary mag-
nitude. With therefore, consider a modification of their preconditioner. In streamwise
coordinates it is given by

(21) 0
0 0 1

withi
3,1,3 -- ,t - 02 26
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Choosing • = u2 gives the original preconditioner of Van Leer et. al. for incom-
pressible flow. In general nonaligned coordinates this becomes

/3 2 -au -av
(22) PvJ -- u I + iV+1

2

(-a, ±(2cv1)uv
/3 2 -u 2±-t-, 2) u 4tt2+-V-.2 U2 .+-V2

- + U2 + V2 oit 2 -+ V 2

Now, we have the condition 132 > u 2 + v 2 (cf. 16). The speeds are now given by

do =q

d± = +f

This can now be compared with (14) for PT.
Numerous computer runs have shown that PT works best with /3 constant and not

depending on the speed. To date there have been no computer calculations for the
incompressible equations with Pv.

These examples show that the preconditioning is not unique. If fact, it is straightfor-
ward to see that the transpose of PT is also a preconditioner with the same eigenvalues
for the preconditioned system. In general, these various systemns will have similar eigen-
values but different eigenvectors for the preconditioned system. Numerous calculations
show that the system given by PT is more robust and converges faster than that with
the transpose preconditioner. This shows that it is not sufficient to consider just the
eigenvalues but somehow the eigenvectors are also of importance.

3 Compressible equations

The time dependent, Euler equations can be written as

1 1

Spt + PC( 2 (P + Vpy) + u. + ,y = 0

pc'p
(23) lit + ?III, + uy + P- = 0P

I't + Illy + vv7 + -y +
p

.St + aS2 + vSY' = 0

The first general attempt to replace this by other systems of equations with the same
st~eady state was by Viviand ([59],[27]). He considered both incompressible and com-
pressible isoenthalpic flow. We will consider preconditionings that are a generalization
of (9)

10 0 0 0 ) 1 0 p
"-1 0 0 ?1 00 0 I 0 L 0 0+ + 01- 0 1 0 1,0 0 ?1 0 ' -0 z , 0 1,

0 0 0 1 . t 0 0 0 u 5 0 0 0 1 , Y,

t .r 7



Note that if we use 1 instead of dp the matrices become symmetric. We next present
PC

the eigenvalues of P D (defined in (11). Let

(24) q + l vw 2

then
(25) do --- q

d±=1/2 [1-a+J/c)q ±1 /((I ý- + i3 2/ c'2) q2 + q( 2 q/ (c2)2]

If we consider the special case a = I + /32/c 2 we find that the 'acoustic, eigenvalue is
given by

(26) d (1 - q 2/c 2 )3 2

Hence, these eigenvalues are isotropic in the limit of M going to zero. However.
this eigenvalne vanishes at the sonic line and so the matrix is singular. In general. if
we demand that the acoustic eigenvalues be isotropic then we have a singularity at the
sonic line where the eigenvalues cannot be isotropic. The two ways out of this difficulty
are either to smooth the formulas near the singular line or else to give up on isotropy.
For example in [34] a is chosen as zero. This results in a ratio of about 2.6 between the
fastest and slowest wave speeds at M = 0. However, now the formulas are regular at
the sonic line. This difficulty is not a property of the preconditioning just presented but
applies equally to all preconditioners e.g. that of Van Leer et. al. which will now be
presented.

The Van Leer, Lee, Roe preconditioning [55] for general non-aligned flow in (4, du, dv, dI,)
PC'

variables is

r m2 11/c0

(27) P1  = -+1/(2 + 1) it 2 +,,2 
+2 u 2 ) ,,2

L-k/c + I ) ?I I ) 72 0

-,32 '/ (Jr 1)2 . 2 (ý2+ + )U4ý , +ý U2 + o)0 0 0 1

{/l-AVI, M1<I,V A/l- 2 M < 1,

T { vl-I-2, M > 1.

At the sonic line /" 0 and r = 0 and the matrix becomes singular. In both
these examples the preconditioner was constructed based on using (p, a, v, ,) as the
dependent variables. The reason for this choice is that the matrices are essentially
symmetric which this choice. However, if another choice of variables is more appropriate
that introduces no difficulties. Thus. for example [13] recommend the use of (p, u, ?, T)
variables for the Navier-Stokes equations. Given two sets of dependent variables w an(l
W let W,,, be the .Jacobian matrix Then,. we have di =',,dw. So we can go
between any sets of primitive variables or between primitive variables and conservation
variables. In particular since the eqiiations are solved in conservation variables we have
several ways of going from the primitiye variable preconditioner to a conservation variable

S



precoldill oier. Thuis, the Chioic of,0 va riable s ilse1I in ('o'strici,*ng, the Jprecoiidit loner is
dlictatedl by mathematical or physiical reasoniing and then the precoiidit ioner c'an be
tranisformned to anyv other set of variab~les.

e \XVe (can construct thle precoilditioner mat ri x for tble conservation variables. If X

are the coniservativye variabl)es and~ wv are t lie priminit ive variab~les t IIC Pc,mvcrvaiiv e

Let, XW denote tble conservative variables ( p, in, ii, E)'. with tit pit, it=p, let, iv
dlenote the pri mitivye variables (1), i, v, S)' )and let wb deniot e (p). u. v, T )'. Then1

C2 00

aiv ~ p 0

Ow 0V

__ p 7) p

0W 1 0 0

S[(~ -i )u 2 +' 2  /2 ] -) (ii )T t 0' 0 T)' ___

p p p ý )

f 1 00 0
div 0 10 0

0w 0 1 0
o 0 0 -,

"* We calculate the residl mia (IX ir. conservativye variables. We then transform (lX\ to
dw~ ats before. Next. we mul tiply Iy P and finally transform back t~o conservative
va riab~les dkW and uipdat e the solution. This is algebraically equiivalent to the first

opt ou but, requiires tb iv e matrix imiiitijphies instecad of one. However, it. offers more
flex ib ilit v.

"* Similar to thle previous suiggest ion we calculate thec residual dX'V andl transform,
to conservative variables dxx and the mutltiply by P. At this stage wxe upjdate the
priminitivxe v'ariables xw. We then use the nionIi near relations to consi ruict XX fromi

wv. lbhis approach bas adv xant ages if' the boundary* conditiot1ns are giv'en Iii terms

of thle pri muit ye v'ariables (1p or TF) aniid so t hey can be specified exactly and not

approximately.



Th'lese methods are all equivalent for linear systems and the ditrerence bet ween t hem
is mainly one of convenience.

B~ased1 on conservative variables ('hoi and NMerklc [35] suggest t wo other Jprecondli-
tioiiers. The first is

0 1 0

(28) PCMI 0 10
0 0 10

2+72 -2 1) ujI1 -2 j) z( -2 1)

This matrix is closely relatedI to the first preconditioner PI- with o =0 after switching
b~etween (p. u. v, K) variables andl conservative variables (see [54] for more details). \Ve
get a siminilar looking precondlit ioner byV replacing Et In the einergy equmat ion by a!i') a
then

1 0 0 0
0 1 0 01

tL
2

+0 0 1 0

2 U - y- I

For the Navier-Stokes equations they [13] suggest a dliffereint 1)rtcond~itioner given by

(29) PCM2- j2 p 0 0

0 I
p3 

Jill
2  ly-i I

ChIoosing 0 or I made very little dlifference in their calculations.. For inviscidl flows
1 =(C'. As pointed out before, for both these preco,!ditIoners the ratio of eigenvalue s of

lie precondlit ionedl system is not one In the li mit of A! 0 but on the ot her hand the
svstenis are not singular at tile sonic 1inW.

We thuims again see that the preconditioner is not uiique for a. given set of variables.
Instead maiiy mat rices are capable of redlucing the spread1 of the wave speeds at, lowv
Macli num mbers. The main (lifference for inviscid flow b)etween all these precondlitioiiers
alre the eigenivectors that result from the preconditioning. There has been little work
coi1l1)aring thle properties and efficiencies of these preconlditioniers.

3.1 Supersonic Flow

\eproviously mniit ionied that for suipersonic flow one can diagonalize bot h marticeIs
A af I?~ slimuiltaneouisly wi th a Congruence transform (two dimensions only). W~e now
ex 1)1icit lvgive this transfornmation. We considler the svmmmet rizirig variables PC
t hen

10



Let q2 = 2 + 2. We assume i > 0, v >_ 0. Since the flow is supersonic q > c. The
last row and column decouple and so we consider only a 3.r3 submatrix. Define,

( v' 2 -2 V q 2 q 2q
Vq q 2 q 2qU, 7, 7 1 1I727 '-2qq 7 2 0

dtli(l

_1 0 0

T= 0 7q - 0
0 0 /1_

and let Q = '1'U 2 . Then
_+ (' __ 0 0 + q_ 0 0

- 0 it) Q' BQ ( 0 U 0

0 0 u0 0

We then have the following trivial theorem:

Theorem 1 If we replace the matrices A and B by the same congruent transformationl
the(n thi.s is equivalcnt to preconditioning with a non-negativc matrix. If the congruent
transformation is nonsingular then the preconditioning matrix is positive definite.

Thi, proof follows since QQ*A = Q(Q*AQ)Q-1 and similarly for B. Thus, the pre-
c(oditioner P is given by P = QQ*. The converse follows by letting Q be the square
root of P which exists whenever P is positive definite.

4 Difference Equations

l'ntil now the entire analysis has been based on the partial differential equation. For long
waves it is reasonable to replace the numerical approximation by the original differential
e(Iiiation. Since we are mainly interested in wave speeds these are governed by the low
frequencies. It is also possible to extend this analysis to the finite difference approxima-
tion. We now make some remarks on important, points for any numerical approximation
of this system.

"[•o)r an upwind difference scheme based on a Rieiann solver this Riemann solver
should l)e for the preconditionedl systemi and not. the original scheme. In [17] plots
are shown to illustrate the greatly improved accuracy for low Mach number flows
when the Riemnani solver is based on the preconditioning

" For central difference schemes there is a need to a(dd an artificial viscosity. Accuracy
is im1proved for low Mach number flows if the preconditioner is applied only to t lie
physical convective and viscous terms but not to the artificial viscosity. Volpe [61]
shows that tle accuracy of the origin;, system (leteriorates as the Mach number is

I1



redutced. ihe author has had a Mifl lr x perietice ini three diineisotial flows a round

a fuselage con hgirat iou. The use of a matrix artificial dissi patioln (Q51]) shoulid he
based on tile precond~it ioiied equtat ions as in thle upindW 11(iffrtc cee Onl thle
ot hr hiandt Nlerle(private coini iiicntat iou) has indtlicat ed that lQ has not (ilifhtit es
withI accuracy in thet very low NI acli regi iii. I le c'ani take thle soi iiion ob t ainted wit I
at precotiditioiier and~ mest that as itijiial dlata 1or a iiontwIurc(Jilit iomle code which

lhen simniply converges inl one time step willtIi he samne small resi du al . lI t his
case' hot Ii thle original syst.rili attd thle precondli tiotned systetm give t he samie results
even on thle dlifference level. U pw~ind schenme tendi to have more dii lic es "OilI
accnracy- for low Mach flows [17].

H etnce. both for up1 wivd and~ central dlifferenice schemes thIe H ietnat i solver' or
art ificial viscoskyt shoniId be based oti PiJ PAJ and not. JA i .t. iii one(Ii dimenisioin
solve wt + Pf, - (PFAlivj, .~ For a scalar artificial viscosity vPAt is replacedl
bY the spectral radins of' P A otr equivalenty tlvIli time step) associated wihthI Ile

precondlit ioned mat ri x. T[his is equiivalenit to not multi1plyiiig thle art~ificial viscosit V
by P.

"* S~imiiilarlyv, when nsintg characterist~ics in Hie boun idary cotidit ions t hese shouild be
1basedl on thle char'acte(rist ics of the motdi fied systemi attd not tilie p~hysicaI syst em.

" 'When uising iuilt~igrid it, is bette to transfer the residitals based on thle precondi-
otioedl systern to the next. gridl since these residuals are more balanced than thle

p ihiysical residuials.

P rvcoiiditioning is t'ven morweimportant when using muitigridI than with art explicit,
schieme. Wi th the original systern the d ispa~tyt of the eigenva tines great lv affects 1Itt'

stmoothling rates (of thle slow coirponents andl s0 slows down the indtltigrid meth1od(.

[56].

"* Itn adilit ion to con"Tivegce OIWNicltiS there are accutracy (Iiifricuties at low Mlach
tin tu1bers [(1 ]. Some tof t hi'se can be alleviated by preconidi tioniing thle dissipIat ion
terms ats indicated above. For very stmall Macli tiutmbers there is also a diufficul tyv
wit h rot iidofF errors as -4 c . Several peop)hle have suggested suti tract inig

tut it actist ant pressuire frotm the (Idyuiatic pressure. A moltre (letailetd aiia lysis [22]
si gge-t s rteplacintg tihe pressu re 1) by j) where 1) ~ and! is a rep~resenttativye
MIachi tuuimbtr.

"* ke coniclutde frotm thle abhove retna rks that the st tady st ate sollition of t he precon-
lit ioned syste t mi iay he Ii ffereiit from t hat of thle plyivscalI syste(m1. Thus, onl lthe
fin it e di frerenice lvlthe ;)rt'uotdi t~ tioinitg cani imptrovte thlit accu rac v as well as Hie
(Oil vergeit et rate'.

5 Differential Preconditioners

Inl tilet previous sect ionts t he lpr('cttti t ioiit't P was a matrtix. lFtr tlit nonine itar fi uid

d itt l t cyiat ions th clte'l'icit'ts of P~ itiv Ivid Ilthe dependenut variables. There are' Several
litititat itots withI t his approach.

12



We first consider a scalar equatioi

(:30) wt + a wit4 + bw:,= 0,

\We consider a uniform cartesian mesh with constant Ax., Ay. We define the aspect ratio
for this problem as

ar = aspect ratio

This can be interpreted as the ratio of time for a wave to traverse a mesh in the x
direction relative to the time in the y direction. We note that the ratio ý_l is meaningless
since this can be changed by a trivial change of variables.

If this aspect ratio differs greatly from one then the standard schemes will converge
slowly since a time step appropriate for one direction is inappropriate for the other
direction. For a scalar equation, this is an artificial problem since, in practice, the mesh
would be chosen so that the aspect ratio is close to one. However, for a system of
equations there are many waves. If the aspect ratio is close to one for one wave it will
not be close to one for other waves. In the boundary layer for the acoustic wave ar =
,,/•. , -_ However, for the shear wave ar -! -- and away from the wall but in

[,+c)/1AY AT" V AT
the boundary layer u is much larger than v. Hence, any mesh that is appropriate for
the acoustic wave is not appropriate for the shear and entropy waves and vice versa. In
addition there are viscous effects that we are ignoring, so that in practice the mesh is
constructed based on viscous effects and ignores both the acoustic and entropy waves.
For the scalar equation we are considering algebraic preconditioning cannot help (Li
and Van Leer, private communication). For a system the preconditionings we have
considered can partially rectify the difference of speeds between the various waves but
does not alleviate the aspect ratio difficulty.

The matrix preconditioners we have considered until now have a second difficulty.
For one dimensional flow one can choose the preconditioner as the absolute value of the
matrix A. Then all the resultant waves have identical speeds with only differences in
the direction, positive or negative. However, in two space dimension when the matrices
A and B do not commute it is not possible, in general , to equalize all the speeds.
Equivalently, we cannot diagonalize the system and reduce it to a sequence of scalar
equations even for the frozen coefficient problem.

To alleviate these two problems we shall allow the preconditioner P to contain deriva-
tives. Hlowever, as before we still demand that for the symmetric equations that P be
invertible and be positive definite.

For the scalar equation (30) we consider a preconditioner based on residual smoothing
[26]. This is given by

(:ý ) (I -- )( - j•yO) R)•€',

where Res refers to the residual before and after smoothing. This residual smoothing
is usually introduced to improve the time step and smoothing properties of an explicit
scheme as Munge-Kiitta or Lax-Wendroff. Here, we analyze the scheme from a different
perspective, that of wave speeds. We assume that the aspect ratioii for the problem is
very large (i.e. b is large compared to a or Ay is small compared to Axr ). The question
we wish to address is whether 3,- and 3., can be chosen so as to reduce this aspect, ratio.
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We first consider residual smoothing in one space dimension. In this case there is
no aspect ratio. Instead we will show how the concept of wave speeds explains tile
phenomena that one should not use residual smoothing with a very large time step even
though it can be stabilized by choosing an appropriately large 3..

(1 - 3g,,)wt + awi. = 0

WVe analyze this for a semi-discrete equation with time continuous, the first x deriva-
tive approximated by a central difference and the second space derivative by a three
point central difference. In order to find the phase and group velocities we consider
solutions of the form w = ci(ki-t,. Here k is given and we find w from the dispersion

relation. For the one dimensional residual smoothing we have

a si nO / A~r
k = asinO; ,', = s*O1~

a + 2/1(1 - cosO)

0 = kAx

To find a stability condition for a Runge-Kutta scheme in time we maximize w and
find that the worst case is cosO = 2/3 We then find that the scheme is stable if

1+2/3"
1 - -1)

4

where r = a .Thus, from the viewpoint of stability we can choose any time stepAtort g~n.1

we wish by choosing 3 sufficiently large. Nevertheless, one finds computationally that
convergence to a steady state is slowed down by choosing At, and hence 13, too large.

Optimal values are r - 2. We shall now show from the viewpoint of wave propagation
that it is not good to choose a very large time step.

Residual smoothing adds a term wzt to the original differential equation. Such a
term is a dispersive term i.e. the energy is not reduced but now the speed of a plant- wave
is no longer constant but instead depends on the wave number. The main purpose of

this term is to increase the time stability limit. However, as in defining the aspect ratio,
increasing the time step is meaningful only if we normalize the solution in some way,
otherwise we are merely rescaling the time dimension. Hence, the appropriate quantity
is not the time step but rather the time it takes a wave to transverse one cell (assuming
A.r is constant). The phase speed of a plane wave is given by

W a
k I + 4/3.sin20/2

Let 3 =(r7 - 1) and multiply vp by r to get the distance transversed in time At.
Then

(32) S. = rlativitc phasc di•stancc =

(12 + 1)- (r 2 - l)CosO

For the long wave lengths cost)O - 1 and so s, - r, i.e. the long wave lentls move
times ftirther in one time step. If we look at, 0 = ir/2, we have . r < 1. Thus

this frequency moves slower than without residual smoothing. For the highest frequency

14



on the mesh we have 0 = 7r and ,sp = We therefore, see that the high frequencied

are actually slowed down by the residual smoothing and so take longer to exit from

the domain, furthermore the larger At is chosen the slower these waves go. Even more

important the larger At is chosen the more frequencies that are slowed down even though

the lowest frequencies travel faster. The breakeven frequency is given by cosO - r-I

We can also consider the group velocity. For the optimal ý3 this is given by

d,_ ,(7"2 + 1 )co.s0 - (r2 - 1 )cos20

dk [(1.2 + 1)- (7.2 - )COS] 2

(7'2 + l)cosO - (7r2 - 1)cos20
(:3:) = (,. + ± ) - (,.2 

- 1)co ,O

The situation now is even less favorable than before. Again, the lowest frequencies are

sped up by a factor r. The frequency 0 = 7r/2 is slowed down by an additional factor of
r2-l and the highest frequency 0 = 7r now reverses direction and goes upstreamr2+1

In figures (la-lc) we plot the phase and group relative distances for r=2,5,10. As

deimonstrated above we gain a factor of r for the low fequencies but actually lose compared

with r=1 for the high frequencies. As r is increased more frequencies get slowed down.

Because we are considering the semi-discrete equation and residual smoothing is purely

dispersive there is no damping of the waves. For a Runge-Kutta scheme one finds that

as r is increased that the damping of high frequencies decreases. Thus, for large r the

high frequencies do not propagate very fast and are not damped either. This explains

one in practice one chooses an r of about two for the greatest increase in the convergence

rate to a steady state.
We next consider the two dimensional equation. To ease the derivations we shall con-

sider the partial differential equation (31) rather than the finite difference approximation.

We rewrite (31) as

(31) lit -- llrxt -- iylyyt + (•J/I lxyyt = aug + b1.4

We are interested in the effect of high aspect ratios. So we consider Ay << Ax . By

rescaling we instead consider a uniform mesh but a << b. In particular we shall choose
a=,(, bl.~

Consider solutions of the form u = + or equivalently u = t- where

- - (kr, k,) and .Y = (.r, y). Substituting this into (34) we get,

w(kk, k ) =k
W~krk~) (I + ;3JI) (I + IH k)

Hlence, w( 1, 0) = and 4'(0, 1) . if we want, these to be equal then we need

3r, = 0(1), l-J = 0(1). This is different than what is normally chosen for in residual

smoothing ([50]).
We now consider differential preconditioners for the Euler equations. We shall only

considered the linearized equations with constant coefficients. This will now be a matrix

t)reconditioner where the elements of the matrix contain partial derivatives. We first
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rewrite (24) in a more relevant differential form. Thus, the Euler equations cani be
written as

(35) wt + Lw = 0

with . = (p, it, I,,S)t . We next define

Q Uir+ a

Since, all coefficients are assumed constant Q commutes with d, an(d 09 then

p pC20i) p C Ie), o

(36) L = ( Q

0 0 0 Q
Let

(37) D = Q2 - c 2 (d + 2

We now replace (35) by the preconditioned system

(38) wt + PDLw = 0

with

( 10 c2 Q2 - C2 ,j
p Y

0 0 0 D

One can then verify that

PDL = QDI, PDI = D- 1 Q-1 L

One can of course replace the I) in the lower right corner of PD by the identily
matrix. Then PDL is not the identity matrix but is still a diagonal matrix. We can uIse
simpler matrices than Pr) by considering congruent transformations. We consider the
symmetrizing variables c( Pu, v, ,), then

Q rod cdY 0

L cd 1  
Q 0 0

MYc 0 Q o
0 0 0 Q

Let,

Q- ed M 0 ~ Q 0 00
( 1 0 0 pt -cd 1  1 0 0

PE;= 0 0 1 0 K M 0 1 0
0 0 0 1 0 0 0 1
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t hell

I)Q 0 0 0

0 (Q 0(0

0 0 Q
so we have dliagonalize(d L l)bv a congruient transforniationl. But,

PELP' = p4-'(P'PEL)PE,

so the congruent transform is simi lar to a preconditioning with a positive definite mat rix
P'PE. Alternatively, (PtPE)L is similar to a, diagonal matrix.

Q2 -cd -c . 0

"P"PE 1 i + Ci) 2c2i)%Xi) 0
- cd,( c2()i) 1 + c2 d) 2 0

0 0 0 1

Note that PtEPE looks similar to PD hiut is not i(hentical. PtPE has fewer deriva-
yives along the identical but PtPEL is only similar to a diagonal matrix while PDL is

diagonal and even a scalar (differential operator multiplying the identity matrix. ThIese
t ransformat ions are independent of the flow regimie as tong as the t)recondit ioner is non-
singular.

"Il'iese I)r'econ(litioniers are conniiectted with the techiniqiqes 1ised in (listribhut ivye (,auss-
Seildet smoothers for imultigrid met hods ([61,[7]).

It remains to show that P is nonsingilar. We have four eigenvahues and corresponding
eigenfiinictions. As isu al the entropy wave decolipihs. For this wave P has an (igenvalwiue
I) and an cigel fuiict. ion (0,0,0.,1) . For the shear wave P hias ai eige'nvalie I) and the
eigeinviector is ( ?'I 1'2, 1n'3 , 0) where

Du1  0
i)h'2  i)•' 3 ,

I)( t + d)O 0
Oxr dmy

The other two 'acoiistic' eigenvalies of P are 22 ± Q )+ i)i2 aid t ihe cigenvectors
satisfy the )seiido-difrerential equation

± 'W) + (2 i)± ± a , (V Oi', c 0

( d.r i)

We therefore have to show that. the cigenvalues are all nonzero so that P is ionsini-

giuar. The operator D) is juist the poteintial operator i.e. for any variab)le w

D)v = (2 - C(2)1,1. + 21/v'i, 1 , + (12 _ C2)I,,-
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For siibSojlnic flow I his is all ellip~tic operator and so invertible. For supersonic flow I)
is a it hyerbl)di c operat or .Siminliarly. Q is a hivperbl 1ic op)erat or (den otin g coinv'ect ion along

it st i't'ain iie. Thuis gi x'n a)ppro)priate bot' )1iilarv c'ond(i tions t Iis1 too sIuuildl be inve\rt~ible.

At a si agnatioii j~Iiit Q is singular and so it is necessary to limlit the valuies of ii and inl
v ill ilie (definit ion of Q So that t hey' do not becolnie too siiiall in a neilghblorhiood of thle

stagnation poinit. A simliilar simoothliing is nieedled near the sonlic ]in(e. Thiese argumenelts

have beni applliedl to 1I) b)11 similar arguments work for PtEPE.
W\ith riiesidul aIsmloothlin g and PD Or P~tPE We have Iincreasedl the Ordler of thle svstp(11

adii so chaiiged the niiiiibr of boundary conditIioiis needed for the eqiiat ion to be well

posed. To avoid this dlifficuilt 'v we do iiot solve the equat ion (38). Instead these pwreoii-
dli oners are u sed ats at post pro cessor for H ie usuial Eilder or N av'ier- St okes equat buns.

liii.at each t inic step we ca 1cmilatv a residnua I based on one's favorit~e scheme. This
vi es a predIict ed va iie of thle chianige ill tiime. Awl~rrfcti k Ve also iip(atc th le 1)01iiidarv

condlit ions for thle standard fluid dvynamic equations. W\e t heni operate oil Au, with P
withI thle I o iiidarv' condition t hat A=Crr 0 . i.e. we (Ion't change the boundary
valui es calcid ated by t lie predict or. \\'heni we reach a st ('d\ state for thle fluiids eqliatioiis

we are Sol ving PA '',-,rrf, f, =: 0 withI zero boundary condli tions. Since P is invert iblle

Alln:- 0. i.e. wve preserve thle steady Stistate. Thuls, in essence we are iminposinig thle fluid
dvnaiiiic houndi~arv- conidi tions b et weeii thle P operator and the L operator.

0 Alternate Methods, Time Dependent Problems
and Viscous Problems

T[hle iist ificat ion for p~reconiiit ioned schemies blegan withI low Mach iinniiber flows. For
sucnh flows ot~her tech iiiqi es exist beside precondition ing the equta~tions. The method0( of
tinec inicliniiiig has similarities t~o precondlitionling [15-].

Tlhie basis of oiie s~i('l met d is(1 to uimp anl implicit scheme. IL .vever, a two Iinmenl-
sioiial iminpl ici t imielhod is too expensive to be efficient. Thus, one classical lv uses ail
.\ 1) a pproac'hi. IHowever, it is known that vi t~h AL)I one can not choose a Very large
tiiie step'l aiid] coinverge qunick ly to thle st eady state. The split ting errors that. occur iii

Ithe ADI) method0( colil pes thle waves t oget her andr one canniot choose an app~ropri ate timie
step fo If ach wave. Inst ead one at tempijt s to separate those t ernis iii thle equations that
('ou1t 'ibIliltc( to thle fas~t acoiust ic waves fromn thle slow coinponent s. One thian ('an lise a
"Ceii - i in pl i'i t met hod whiich is iminpl1ici t for thle fast waves an(I explicit, for tHie slow wav'es.

Tis, thle st abi lity l imiit of the scheme is governed 1x' t he c'onvectivye sp~eedI rat her than
t he a cuitmaic speed . The cx phici t p~art can be ei ther a leapfrog miet hiod (Q201, [21]), or

aw() step mnet hod [22]. Tlm is c-ai also be ext ended to thle Navier-SI okes equaltions [23j.

.\Itelli-at ivel V.ov thlcIlese cinorn;ieiit s are identified,. one c-an spl~it I he equmat ions in several

pieces an 111Solve each oiie sepai'ate(ly as in thle classical splitting methods [2] . In this
('ase oiie canii us an ii npl iit net hodl for thle fast, waves awl1( an expl~ici tnt WW 1(1fr I he
slow waves and( in addition one c'an split off the vrisos terms. These mnet~hods work for
bothI t imre depeiideiit aii(l st eadyV state hpioblel(ins.

A dIiffereiit alt erniativxe is to add t ermus to thle equations which d isap~pear in the ste(adyv
state(. Thiis has at coinnect ion withl precond(it ione(,( muet hods wh'len t~ime denivativyes are

added to thle eqi mat ionls H owever. in t Iiis approach ot her termns can ie added beside



time detrivat ive's. Ow e xamplet' is to asslillit t at thie total (tilit lpy J is cotist ait ill thei
stt'ad~v state' for th li' olifrtssildl(' ilviscitl t'(jlatioiis. Ont' cani thlie add terms to thle

e(qiala otis t hat depenid on I lit' detviat ion of the( current (enthlalpy at each poinit from I his
comistamit st eady state t'utlihalpv [25]. ],rf t ie iiilomipIressil~lt c'quat bs onie (ain ;totld lt'e
dlivergenice' of Iit'e vtelocityV fie'ld of. tne du'(erival iv(' of th l d'tive'rgencett to thle Iiioineitilniul

'uovalkin [11]. [13~] . Ot' ami also tolisilerit amioie geiieral eqiiationl of sta~te t hat redliices
lo the physical oiie at thle teAmdv state [11] . lIn [27] 1 hey anialyze thle geiieral case of such

jpsclid)-illlistca(I vs lms

An e'xtenisioni of this t('cliiui(pllt is to mlodify, the' different jal t'qiiatloll to remove the

acous~tic waves or ot her 'bad, feat mirt's. One fulst Ilit'i julst ifv t hat thle sollitit 11 oh-
tai iied to thiese miodified I opluat ions are clIose to tlie( origminal equtjatious for someit flow
it 'gillin. Typic al examupltes are I lit various Low Macli milibelu'iexpalisiolis for tHie f1luid d 'v-
iiaiuiic equlat ions or t Ili' gt'ost rophlic 'quiat ions as ani approxiruat ion to tIn'c shallow vat t'r

equIlatioils ill metettorology.

lVor inlompifrtessiblel flow popuilar scnivills ane t lit' SINIPITF [39)] aiid NIA( [IS] algo-
mithms au4 their gt'ieralizaltnios. Uliest usually rt'qiliire In' solui tion of at Poissonl equiatioll

for thle fpitssuir( atid thit'iia pre'ssiurte corr'ct ion is iisedt'Io uiputlaft(' t lellonilluit i eqila-

titols. Thetse' iiit'thiods caii t litll lht'geiit'rali'iet to t In' coin prcssibleplt l t lilt iolis. [2,1.1 .\erkle.
\t'likalteswarali auh flit'lt)w [371 com~ipare' Sitic Iliethiods to 1lt'e preconidit ioned' techniueifi(s

discusse'd in t his pape'r. We again sI rtss t hat thle dlifference iii tliest' approaches is not

whet lie'u deiisity of- pressuire art' iusted as th lit dpeiudeit varialdt' as (nilt call traisisfri

betwet'i thense variables. Thins, for example'. out' caii uuiodif~v thlit coiipre ssible cout intuit 'v
t'tjiatloll by rtpacilig t it' t inii den ativt' of th lit d'isitv withI a timet derivat i\'( of thle

pre'ssure. This is just a~umothr l'Namiplt of a matrnix prtecoidititoninlg ats out' caii t'xpr'ss

lt'e pirtss~iir d'rivat ive as a rom~iiilat iou of at deuisit 'v dlerivat ivt' togt lit'r with Iiioiieiitniui
amid tenergy deriAt ivt's .As tlescribetl above, it is a prograimminiiig decision whittht'r one
shiouldtliistp this imodifited tetuat ion to iupd(at e th lipfre'ssuire aiid thelti traiisfe'r to demisit ,v or
to calciulalt' th lt'heit applrop1riate' fprtcolithit iolliifig mlatrix and 1iijnlatt' the dteisity. lIoM a
linitar s 'vstetiu th In'wo) applrtoathits art' ident ital.

F~or t iime depentidenit p~roblelms I lit first applro~acli just discuissed is uiseful. IHowever.

lt'e prtectnidit ionied imethtlods and tlit(' stecontd approach of t his Set'ttion dt'st ro N I lie timue

accuracy uimiltss t he coeffitient s of thlit pertuirlbat ion alt' chiosenii s, a function tof th le mntsli
slit' an i so 0 on ly afl'tct termns of thlit ordtr of t lie accuracy- of thlit schemeit. A mlore popu1 lar
appmrthti has been to ist' a twto-timet schetmie. lii this approach each ntew t imet levtel
is considelltrtedlas thet stteady statt' of stomet pitult'ii .Alt' rimativtl'lv. Ilt'e physical tilt'

dterivat ive's arte tcunside'retlia forciiig tetriis. Omne now iist's Ilt'e prtecointitioined iethllodhs to
achiitvte t his 'stteat\, statte' Which ill nt'alit ,v is 1 lit stulutiiii at th li'eitxt tiline sttep. Hetnuce.

the're is t hit physical tmit]( t and aii art ificial turn' antI 7 goes to iiihiiiit v as anl uin'r(
loop withiii t'ati tiun' sttep. [121 [ 17], [ 18]). Il iuiis.

p- + i-u + L + -2 -0.

Itit' ma~in dhiffituilt *v wit I t his appuroachi is its e'fficie'ncy. It Is reastonable' to limst, sch
at tt'thniuiqu oldnv if teachu 'stt'adv stiltt,' lprtohl'ici t-an hbt solved withI lit t It'tffort . Omit

advanitage' is t hat out' ismuall has g otl imii IialI in's for telitsol ittioni Imust't tin 1 whe tlmto

at prtevioums tilnut st('ps. Hlowever. it typ~ically' takes 10 suhit'r-ationS1 for- t'aCi t iint stu'p.



lticipt'. this appriioach is t'il I tintes moreit e'xpensive\'t'Ihan a straight nimldicit nul('hot. One

tall ilko list' an N('wttll Itert'I ion [38[ at eachl ttfl(' stepi. neverthleless, it 5t'Iii-impiijIiit

approach~l in ([2(0] - [23)ý st'elis at I iactie

All till' methoidts tdiscuissedtlhius far have tec'il lba~et oili anl iniiscitl ainalysis. F~or

flti, equ'-Sots '(ations11 at highl Rc~nltol(s11511c itttl''we (10 iiot e'xpec't any\ tilpot 10antI

tlaiiý'cs otil sitt' tiit, huniidai v la ver. Inideil( the bl~tiiiiar it vier viscous i5 fects" iiitldif v
i lit' t'tgt'tialii('s of the( dijfferetnital ope~trato~r. We( Ililis wish (to equtalize' th ci'(ontriiliit io

o)f I liret quanititit'". the' acoutst it wave's. I lit' c(nmyi'V't r Wivt'5 andthe v i( V iscOs I'ivic III

part ittillar I lit \isttoits tigt'iva~in,' art' vetry stifF anti Sto thet ('igettrallit's of thle solutiont
tijcrtt'rt t rc fi'lit loniict' well 1 onitil ioned't All 1tle pr('tondiitioiit'is pr'esentledl abov\e depenid

()ItI fit'tp j~tiitt I,, II s- ( .i. (). -F, ý ) . p 01i ual rallies for Wiestp paratiit' (s W(i't' gimVi for

itivistcit flow. A\ Simpijlt'e etensiton of I lit' ahove miethlotds Ito \isconis flowA woiultd keep tlie

satlt ortin for t it' pnt'ttildit ioninhg mat rites hut allow t hetse paramneteris 1(o also dlependi~
(illI thei(' lt'toltl td l o~r Pridtit numbiier ('et' fin. e'xamle~t ['101 4[13] ). TIlitus. for exatiille otie

fitl5~ t hat fo.t hit original penooiirsilivmet hodtiIhat .1 sliotiltd incr'iease as the

plirsital aimalysis tlf I lit Navie-i-Stokts tipjlal jols (see 29). Thet tliHietitv is that the time
st(p areSd t gtovterniedt ) lt it' acouistic antI covitivt'tt t'5Je'((l alit also a v'is'ou~s conttribuitionl.

A ha~sic pr'obltemi for (hit' lptt'tondittioil Navier-RIokt's eii~atttims is well-posediiess. FOr

lie iltvi~til t'jiat tlins onet'tati show that WithI the PrOCOnditioiter PT t hat tine eqtla~tions
t'aii he srinnimt'ri/A'' if (l. .1 satisf ' t lie inpittal il y ( 15). (see [54] ) . Irhv pi-t'ndlthitoner

P, is tolist rlhitit' fronti ithe sv111iciiim' formn. Henceit iii both cases we cati rteduice thle

prclt'tlt it ititt't t'liat ionis I ti a ,y ne r \ hperbl (1ic syst em and So it is well posed. Oncee
one adtds t hit viscous tt'rtms t his anialvs is IS it longer valid. One~ possibility is It) stairt
with ii fortu t hat is srniiii tiittc for hothI thle initrseid antd viseous terms [1]. If One ulses
at pos"itire 'l deit t' pr'rolidititioiiei for lthest' v'ariablels Amiti st andtarn ('tery arglitnont

show." t hat lt'e litnearizedt pret'otiditjionedl syst eni is w('ll-lpost'(.
teitiw antalr/.' tiit jt'tithe pc loldloer Pr at little illore earefutlir* for thle inicom pressible

Na v ier- St okt'sý t'tjial ious. We't alsto iinwiiaizt't antid so (lite eotfit'it'iito P h. 1', an, totsivnl('r'

as toiit ait. -I'lie result ant prItecond~it ioned equiationis are

11 1), +

(12) -I + ~ + +~~~ ++1 -

l'iiW e e t'differet' atle oIhessond t'tnat ion wt('liithi( respe ' to e and t oae thir t h reapgeter
a>to'NO wave 'qat o o the pressure. 4\1\e 'oit irinnt'r 1rsfirst (qu2)io. iLe. R p10u

and1 A'32 k2 + Te

Thw w rplae ll Possllc~patoniisd n he ACtye aprac byitg(er



( ) 2 - [o(.I( 0A + 1',,.2 ) -+ I"•,l ] A . -1 2 _A12. -2 .

We first consider the case o = 0 (i.e. the original p iolul ii pressil)ilitv for tlhe

prirnitive equat ions). Then

(IlA1 2 ± 1=.132 -

\Ve 11ow have two regi iles to consiler

('.aIe Al 'I small (i'e. 14.2 < 1.12/12)
Then (441) gives 'c .As expected( l introduces, a heca'v ini the acoustic wave . Thw,

Speed of t he wave (real part of .') is now slowed down for t he samil' 3. We I ,ins sll()d1l(
choos(' a larger .3 as pi increases to (omppensate for thi'is (sece also [13]).

case 2: 1lk1 large (i.e. AlI > 2/,2) Now. 2, = ,A1. [i + I -. 1,, 21A.1=. Ilence.e
& is pure imaginar. Thuis, these high freqieiicies do not propagate aid their dampin)iiig
is redluced bl .3 (for the smaller damping mode). "'Fhlis. one also wanlts to increase .3 so
thatl most of the mohdes in th le dlonai i correspond to small I .

\Ve next consider non-zero n. Let "• o (?0/q + t0,'A)42

(.15) + ; = I

Taking real and iuagiriary parts of tle square root we see I hat onl "2 (,liters into t lie
imaginary part of ,,, i.e. the decav rIalte. So tile sign of o is not Important for viscous
effects. [hliis, it seems that. o has no major impact on viscous flows and its adl\antage
coliCes from equalizing the flow speedsl of the iriviscid portion of t •e flow.

7 Computational Results and Conclusions

Numnerous auithors have used some of tihese preconditlonlers for both il'ompri.drible anllI
('0ompressiblde flows. A selection of papers is presented iiI lhe hbiliogra ' iv., le're we
summarize a few of these calculat iors. ,Most of tlhese coip•ii at ions have uisedl central
ilfrvreiice approxi inaitions of the spatial derivat.ves and either a Hmuige-lviit a explicit

scheme or an AD.1. implicit scheme iII t. ime.
For the original pseeqao-cnpressi l)i litv elations a iimber of imthors (e.g. [1(].

[15]. [II] ) have fornid tlhat a constaant 3 works best. Himzi and Friks-,, [151] :i,_lrgel
.12 it = .r(0.3, r ( it2 + ?,2 )) with I < 7' < 5. see also [9] . II [TS] I hey a-,lso explo)re similar
issiies with regard to •ijwiind schemes. As Ibefore their constant 0.3 imisl depend on
the iiormalizations used. Arnone ([3]. [.1]) has iseld lie original ' svido-('il ressitIilitv
method to Solve inviscid and viscous incompressiblhe flow aloutt cascades.A A irge-

1lKitta method is used which is accelerated bY a inultigrid lechiiique. This method hlas
been extended by the aithor to inclide thlie preconditioier PT. II these ('alhullations
we lind that 3 cornstaiit is more robuist. t han clhoosing .3 to depend on thlie speedt
of the flow. It most c'as(es using a variable 3 caurses tle it('ra-t iois to diverge t houigli
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whenl Ihey- doI coiiveroA' it is fastr t han t ie (Oustaiit 3.1 NOii aim! ( 'ai'o [Hyi have a

siiiiilar thriee' dimieinsional co(h( for ('Nternial flow over wi iig~s. lTiis. codle has also beeji

ext eiided toii0 iil PT1 . Ini bothi thW Cie iC' i iltstlie conivergenice is also vCery i('f)-lideiit oil

lIeh bo)iiilar ,v ioiiilit lull riipuosl. [or sorile l)Oiiiiar\ v011(1 it Oions I lie (Thde convergedl for

it ratige of (w andtihIlen o(I I gavie I lie fast est conv(''2elgen(' r'at (' as expected'i. I lowevi'r,
for o he loiinidarv cornditionis only I lie origiriai f)eil-'in~esli It riet hod oI =(

Would conlvertge. It is slispecteil that t1he (difficulit ies are( i'oniictlei with Iinit ializatioln.

Thus. o I thloughi laste (1 may he less, robust . It would thierefure lbe ii ciiessadi',v to st art

lie calcuilation With oi =0 arid oiil omice thle asyimptot ic regioii is reaclied to chiarige to

lsii [191 also solVes 111 li nopesbl 'ua o s iismiPT. Ini tIllscasean "ijwiilieil

approxiniation is used arid the soliit ions advanced using anl A.DI).. met hodl. [hey,

(I'a run iie ill Iliiire detail lhe ifi i ieiice of o arid 3. IDir to thleiri mpicriip t solv\er t lie code

colliveigeilccs ill all t lie cases t hey t v nred, Ilainly flows ahioiit a delt a wing.. I lowevei . I hey

also timid that .3 I is faster t han the' variable 31. They principally invest igatedh o =-1

hut inrdicat et hat ANT heW s behaved similarly. There have,( beeni iiu cormlrt atiuiis, to) iat e,

for thle i ioilieslle((ia ul sng thli Pv lprecorditit oler dueiI to thle ilewiless of this

For t lie corilpressibIle c('(lat ions at low Maici numbers early' calcirlat ions weedone
lv himile v. Mlchoniald arid Sliairot Ii [8] arnd a later by [). (Chloi and! Nerkle [11]. adrl

also) Y.11I. Chloi aind \erkle [31] . These met hods have riairil v uised A.l).l. methlods

thoighi soumie results with Ii hiige-hKiitta 'schlleuils hit\a(. also lbeeii achlievedl. More. recently

([ 171.[5,51) resiults hitve( bueen achieivedl wit hi t lie Pv lpr('(rilidt ioiier iin comnjunrct ion wit hi anl

iipwmiwl schucivi. C( ufrey(pr11valte (ioriuniiiirat ion ) rindicate~s t hat t here is riot a great

di frererice bet weerli tlie t wo precoridit ioriers. Thi( rise of t lie, correct R-ierniari solver was

liore import ant t han Ilie (l('tails of i lit' hprecoiidit iouuer.
Nincli of thle nulost recent work has gone into ('xterinhig thiese results to lie Navier-

Sntokes equiat iois [131 aiid chieimistr Q171IT. [181. [5,1]). A mumiiber of wnthlors have also

invest igated extensioins to tilme depenudeint probleiis buased onl a two-t un'c approach ( [I61.

[IS], [62] ).

Ih~ =eew preseiii only oiie, set of* resulits. Thiis is for inicormpfressible flow aroiuud it

\hKh Casiatle WithI a rioniperiodic iiieshi across t lie wake. 'Illie esh is shown in figure

2a. A\ iRinge-1Kunt ta imiiltist age schienuie is used withi a noiultigrid accelerat ion. Thue code

is a ('Xti'iisioii of t hat uf Arrione aiid Stecc) [1]. Thie flow is turiirlrleiit with Iit ae Nllolihs

riuuuuier- of 50.t0( arid Haldwinl-Ioiuiax tvype tuirlbillelce n110(1( is used. Ill table I We

pretsenlt thle re'sidual of thle hpr(ssulri after 51) steps oii the first nieshi. 50) steps oni thle

secoind mlesh arid 300t steps onft ilie fiiiest rineshi. W\e thuns see t hat o =I gave the( fastetst

coii \c(gcli ic irates, thioiigh i tlie ii ferenices, were' not v~ery large. W\e wetre ahiht toi run only

ilie nIiodifj(ih \all Leer 't . al. pneconiiit ionier arid evenl t hat onily withI a coiistanit o amid
31 \%itl o as oupiisei to0 theii value of o given in (22). W\ithI t his value oif o thle t erris

wIt ,-' + .2 do) 11)I per



mlethod .4 t resid(IIali

precondition AV I 1 6.63
precondition AV 1 0 6.07
precondition A\V 1 -1 5.76

no precondition AV I (i.3-1
no precondition AV 1 0 6.23
no precondition AV 1 -1 5.76

precon AV eq. (22) 1 0.5 6.34
no precon AV eq. (22) 1 0.5 6.22

Table 1: Convergence rate

III figure (2c) we also plot the convergence rate for the first example in the table.
II conclusion these co(l puitations show that one call calculate both inviscid anld

viscous flows and even those with chemical reactions over a large range of Mach numbers
going down to M11 = 10-5 in soie cases. ihere is need for further work on the effect
of the parameters in the precon(Iitioners on the convergence rates. It is not understood
why constant /1 seens to l)e the best choice. There is also need for further investigatioll
on the effect of boundary conditions on these precon(litioners.
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